
Browser Self Protection and
Attack Surface Reduction

White paper | September 2023

2 | island.io

By their very nature, web browsers are built to run third-party code directly
on the endpoint. The majority of these application engagements come
without verification, creating fertile ground for attackers. While most
enterprises perform continuous efforts focused on educating users to
minimize risky behaviors, not even the best education can prevent all of
today’s sophisticated threats. Phishing, malware, ransomware, and many
other threats often begin with a web-based engagement. The consumer
browser is an unwilling participant in these engagements, so enterprises
need to layer control after control around these web browsers to insulate
them from danger. The traditional answer? Stand up a stack of controls in
front of these consumer browsers to protect the browsing experience.

Protecting web usage typically starts with web gateway (proxy)
infrastructure for many organizations. While these were practical
approaches in years past, the growth of encrypted traffic (SSL) and
sophisticated threats such as browser code injection leave existing proxies
and SASE solutions unable to protect end-users adequately. These attacks
and defenses leave the user’s consumer browser (which cannot defend
itself from such techniques) subject to exploitation.

In an attempt to combat these attacks, many organizations explored using
Remote Browser Isolation (RBI) technologies to augment existing proxy
resources. The concept behind RBI is to force uncategorized or untrusted
web traffic into a virtualized cloud environment for remote execution. As
the user engages web content in this way, the site is rendered over a video
stream (often HTML5) back to the user’s consumer browser. In principle,
the user is protected from any harmful content.

Overview

3 | island.io

On the surface, a remote vehicle to execute potentially dangerous web
content for the user seems like a viable protection strategy. However,
this approach is fraught with its own set of challenges. To begin with,
it is not palatable to force all users’ traffic through RBI. Why? Because
the user experience and performance simply are not acceptable for
everyday use. Rendering the content remotely and streaming it back to
the user adds noticeable lag and visual imperfections. Thus, because the
experience is generally poor, RBI technologies are usually invoked only
in specific situations. For example, RBI is often used where content must
be isolated for potentially malicious web content on untrusted sites. This
means that only a tiny subset of traffic (usually 1-2%) is passed through
RBI technologies in the first place. By reducing the scope of where RBI is
engaged, the organization can attempt to minimize the concern over end-
user friction. Of course, this leaves a significant gap for sites categorized
as collaboration, file sharing, social media, and others. In these cases,
the web traffic is never passed through an RBI solution, yet risky content
still exists. Further, Single Page Applications (SPA) and HTML5 canvas
rendering are meant to be executed locally and would not be candidates
for passing through RBI solutions. Put simply; the attack surface is much
larger than the exploitation footprint protected by RBI. These limitations call
into question the value of the investment.

RBI technologies are also quite limited where other types of common
browser-related attack techniques might be employed, such as:

Sophisticated Phishing Attacks
Exfiltration Of Data
Man-in-the-Middle Attacks
Malicious Extension Exploitation
Embedded Malicious Document Content
Localized Browser Tampering
Man-in-the-Browser Attacks

In each of these cases above, RBI either has no role in protecting against
the attack or cannot offer full protection because it’s only used for a
fraction of the web traffic.

Technological
Challenges of
Remote Browsers

As previously mentioned, RBI is most often invoked for web traffic destined
for suspicious sites that might cause remote browser code injection or
attempts to phish users leveraging fake sites. However, this limited usage
of RBI means that it cannot fulfill more valuable browser-based use cases
that may be important to the organization, such as:

SaaS and Internal Web Application Protection
Contractor and Third-Party Provisioning/Protection
Call-Center Worker Governance
Bring-Your-Own-Device Policies
Privileged User Protection

Use Case
Limitations

4 | island.io

A web browsing experience is often central to the needs of such use-
cases. Yet it is essential to note that RBI offers little for these scenarios.
To begin with, the necessary traffic for these needs usually isn’t routed
to RBI. Further, RBI just isn’t built to solve these challenges and lacks the
mechanics required to add value to these core browsing use-cases.

The proliferation of threats leveraging the web has piqued interest in RBI
technologies. However, RBI provides limited solutions solving only the
symptoms like browser exploits and remote code injection. This pattern
is all too frequent in cybersecurity, where vendors build solutions to
address a handful of symptoms without addressing the core problem. Here,
the core problem is that consumer browsers were never developed to
accommodate the needs of the enterprise.

What if the browser was built for the enterprise? This is precisely what
Island considered as we created the industry’s first Enterprise Browser.
As users engage with all corners of the web, Island’s innovations deliver
a true self-protecting browser to ensure that all engagements are safe.
These capabilities deliver far more effective outcomes than clunky RBI
solutions while doing so in a native browsing experience. This ensures
that users have complete protection without the negative impacts on their
experience. Let’s dive in more.

As the inventor of Remote Browser Isolation, Island co-founder and CTO
Dan Amiga has extensive experience with browser technologies and a deep
understanding of the pitfalls. From the beginning, Island put significant
expertise and effort into delivering the advantages of browser isolation
without the need for the “remote” part.

Rethinking
Browser Isolation
Outcomes

5 | island.io

At its core, Island is built on the Chromium project. This open-source
project is the basis of modern browsers like Google Chrome, Microsoft
Edge, and many others. Using Chromium ensures a web browsing
experience that end-users are familiar with and the snappy performance
they expect. The ubiquity of Chromium also makes it a favored target for
attackers and malware developers. Security researchers and the Chromium
project team go to great lengths to patch known vulnerabilities, but there
will always be zero-day exploits.

One example is the Chromium Just-In-Time (JIT) compiler. This mechanism
improves web application performance, but it has been at the core of
many recent zero-day vulnerabilities across all browsers which leverage
Chromium. Rather than attempting unnatural techniques such as Remote
Browser Isolation, with all its shortcomings discussed above, Island took
a different approach by going straight to the source of the problem.
While the JIT was originally designed to improve performance, those
performance improvements are quite modest on modern hardware. The
Enterprise Browser disables the JIT as a default configuration to eliminate
a source of vulnerability with undetectable performance impact. Disabling
the JIT also disables WebAssembly, further reducing the attack surface.
Island offers policy-driven capabilities to selectively enable the JIT and
WebAssembly in the rare situations that require it.

A similar approach is used with other browser components that are
vulnerable to exploitation. Island will detect potentially malicious javascript
from untrusted web destinations and dynamically block execution across
over a dozen APIs and modules, including WebRTC, WebGL, and others.
Again, these configurations are policy-driven and offer complete flexibility
to ensure that any trusted, enterprise apps work as expected while
reducing the browser attack surface for malicious attackers. Island also
leverages several additional protective capabilities by enabling Arbitrary
Code Guard, Control Flow Enforcement, and Control Flow Guard. Each of
these capabilities ensures that arbitrary code cannot be injected directly in
an attempt to manipulate the memory or execution flow of the Enterprise
Browser.

By delivering Browser Isolation directly into the Enterprise Browser, Island
removed the most significant areas of browser vulnerability and added
capabilities to protect against exploits. As previously mentioned, this solves
the core problem of advanced web threats rather than the symptoms.
These alone negate the need for Remote Browser Isolation solutions by
preventing malicious code execution directly within the browser.

6 | island.io

While Island has embedded browser isolation capabilities directly into the
browser, delivering a safe browsing experience must go deeper. Thus,
Island pioneered the self-protecting browser that goes beyond browser
isolation. This unique approach protects the browser, applications, and
data both from external and internal (or local) threats. Below are a few
additional capabilities that Island delivers within the Enterprise Browser:

Device Posture Assessment - Island offers deep inspection of the
device it's running on to evaluate access policies. For example, an
organization may restrict access to critical applications if a device is
running an outdated OS version or lacks full disk encryption.
Man-in-the-Middle Protection - Island is the first browser to provide
policy-driven capabilities to recognize when an untrusted man-in-
the-middle technique is employed. This allows the organization to
completely prevent data theft by a man-in-the-middle attack.
Document Isolation - With built-in secure storage and document
viewer, Island provides a facility to allow interaction with a document
without the risk of malicious embedded code being executed on the
desktop. Organizations can also redirect document downloads to their
preferred secure cloud storage location, by policy.
Malicious Extension Protection - By controlling the entire browsing
experience, Island also includes oversight of extension usage. This
gives the organization the power to control which extensions are
allowed and which are not, by policy. In addition, Island’s Extension
Guard can ensure that critical applications and data are protected from
extensions where required.
Local Tamper Prevention - Any attempt to modify the Island
executable, its memory footprint, or the libraries it calls on will alert
administrators and completely disable the browser. This is essential for
protecting against advanced malware attacks and sophisticated insider
threats.

Creating a
Self Protecting
Browser

7 | island.io

Encrypted Browser Data - Island encrypts all local data stores to
prevent exfiltration of cookies, cache, or stored passwords. This
extends to documents as well, with local secure storage for documents
that are only viewable by using the Enterprise Browser.
Enterprise Browser.
Man-in-the-Browser Protection - By leveraging many of the core
technological capabilities within Island’s browser isolation, the
Enterprise Browser delivers native man-in-the-browser protection. This
ensures that attempts to insert code impersonating a legitimate site are
stopped before malicious code is rendered.
Anti-Phishing - Island built a unique facility directly within the
browser to protect users’ credentials against phishing attempts.
With a combination of web classification, risk scoring, and enterprise
domain awareness, users are warned and stopped from entering their
credentials if they navigate to a phony site.
Password Manager - Island further protects credentials through its
integrated enterprise password manager. This makes it easy for users
to follow the best-practice of creating unique, complex passwords for
each site or application.
Keylogger Protection - Island protects users against malicious
keyloggers by continuously filling the keystroke buffer with random
characters. Even if an attacker is successful at installing a keylogger,
the data they intercept is meaningless.
Web Categorization & Risk Scores - Categorizing web content for safe
browsing has been a hallmark of web proxy technologies for years.
Island simply embeds web categorization and reputation scoring
directly into the browser for safe browsing and compliance needs.
Malware Inspection - Island Enterprise Browser has built-in malware
inspection to ensure that all files uploaded or downloaded from any
web destination can be inspected as policy requires. Island also offers
integration with third-party EPP platforms (e.g., CrowdStrike, OPSWAT,
others) for malware inspection.

8 | island.io

Protecting users and the organization’s most valuable application resources
is vitally important. While Remote Browser Isolation technologies were
an interesting concept many years ago, their adoption never made it to
the mainstream. Real-world implementations of RBI are complex, limited
in outcomes, and generally deliver a poor end-user experience. They are
designed to address a few symptoms of browser vulnerabilities yet do not
address the core problems.

Island has taken the outcomes promised by RBI
technologies and brought them natively into the
Enterprise Browser. Instead of solving symptoms, Island
went to the core of the problem by building a browser
specifically for the enterprise.

Yet Island didn’t stop with browser isolation alone; the Enterprise Browser
delivers a full spectrum of capabilities to protect against the widest range
of threats. It boils down to a simple question, why offer a subpar remote
browsing experience if you can deliver an easier, more complete, and
natural experience locally?

The Takeaway

9 | island.io

Island Enterprise Browser Remote Browser Isolation

Performance Native Browser Performance Poor Performance

Impact on UX Natural User Experience Unpleasant User Experience

Traffic Coverage All Traffic 1-2% of Traffic

Anti Exploitation Proactive Built-In Exploit Prevention Remote Execution of Content

Phishing Protection Domain Misuse Prevention
Render Site Remotely as Read-Only for

Uncategorized Traffic

Password Manager Integrated Enterprise Password Manager
None (requires third-party service &

extension)

Man-in-the-Middle

Protection
Complete Man-in-the-Middle Protection None

Man-in-the-Browser

Protection
Complete Man-in-the-Browser Protection None

Malware & Ransomware

Protection

File scanning for upload and downloads

to block malicious payloads
Limited

Extension Protection Full Extension Control and Protection None

Device Posture Support
Full Device Posture Assessment for

Policy Driven Decisions
None

Document Isolation
Full Localized Document Isolation with

Complete File Engagement

Rendering of Content in Cloud with No

Engagement

Secure Storage
Built-in Secure Storage For Full File

Engagement
No Secure Storage

Last Mile Controls
Full-Last Mile Control for Natural

Application Protection and Interaction
No Last Mile Controls

Industry Trend The Future The Past

